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Abstract 

We briefly discuss chemical structure as an object of mathematical characterization and 
list various structural invariants suitable for such a characterization. We restrict our atten- 
tion to modeling compounds as graphs and examine several diverse structure-property- 
activity problems as an illustration of different mathematical analyses. Specifically, we 
consider: (1) the equivalence of an apparent quantum chemical problem as a graph 
theoretitcal decomposition (the analysis of diamagnetic suscepübility); (2) partial order as 
a tool for the illustration of regularities in isomeric variation of molecular properties 
(boiling points in alkanes); (3) ranking of structures as a tool in a search for biologically 
active substructures, illustrated on mutagenicity of nitrosamines; and (4) construction of 
search vectors as a tool for Fmding structures with a prescribed property. We end the 
discussion by pointing out advantages of mathematical descriptors versus physicochemical 
properties as descriptors. In conclusion, we focus attention on two problems facing graph 
theoretical approaches to chemical structure: How to incorporate differences between 
heteroatoms into molecular graphs, and how to incorporate spatial characteristics of 
chemical compounds into graph theoretical approaches. Finally, we generalize the 
traditional graph theorefical approaches, based on graphs and weighted graphs, to physico- 
chemical matrices associated with molecular systems and point out the potential role that 
structural invariants play in discussions of molecular properties. Within this more general 
point of view, the quantum chemical computations produce but a fraction of the possible 
structural invariants that one may consider for a given system. 

1. Introduction 

"Chemical bond" and "chemical structure" am elementary concepts in chemistry 
representing the different emphasis of theoretical models of molecules. The first is 
concerned with the properties of electrons within the fields of the nuclei, and the pursuit 
of these ideas results in a parücular stable (or less stable, as it may be) molecule. The 
second idea accepts a given connectivity and the analysis of its consequences foUows. 
Hence, the graph theoretical appmach to chemical structure is not a replacement for the 
quantum theoretical appmach to chemical structure. On the contrary, it plays a comple- 
mentary mle, allowing meaningful comparisons between results and pmperties on 
different molecules or various fragmentary results on a single structure. Before we 
consider the similarities and differences between the two appmaches, at two distinctive 
levels of modeling, we have to address the questions: 
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What is a structure? 

What is the chemical structure? 

2. What is a structure? 

Chemistry is rich in concepts that am of pracfical use and interest, yet many of 
them have not been rigorously defined, leaving them ambiguous. It may weil be that 
insistence on rigid formulations of some of the ideas could make them unattractive, 
cumbersome and less useful. Only when expectations am raised that the accumulated 
data can be beüer raüonalized with a quantitative model has the time come to attempt 
to resolve the ambiguiües associated with a qualitative concept. In table 1, we list a 

Table 1 

Ambiguous concepts in chemistry 

Structure Complexity 
Shape Branching 
Size Cyclicity 
Similarity Reactivity 
Profile Function 

number of ambiguous concepts used in chemistry, starting the list with "structure". Most 
people have a rather good idea what chemical structure is (and what it is not), even 
though they would find it very difficult to qualify their notion of  a structure. It may be 
instructive, therefore, to start with the common interpretaüon of  such terms and 
then try to suitably modify this to fit the needs of chemistry. According to WebstePs 
Dictionary [ 1 ], 

Structure is: (1) 

(2) 
(3) 

something made of parts fitted or joined together; 

the essential supporting portion of this; 

the way in which constituent parts am fitted or joined together; or 
arranged to give something its peculiar nature or character. 

Hence, "structure" - to start with - has several distinct meanings, and while this is 
tolerated in linguistics, it causes ambiguities in science and is, of  course, unacceptable 
in mathematics. Turm [2] touches on the distinction between a graph, as a topological 
object which contains information on connectivity; a form, a flexible topological object 
embedded in Euclidean space; a figure, a rigid geometrical object in Euclidean space; 
and has reserved the term structure for the mathemafical object that models a chemical 
object (e.g. molecule). The preceding glossary of terms appears useful, since it reduces 
the possible confusion when the terms am used interchangeably. 
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Table 2 

Mathemaucal objects of interest in chemistry 

Ordered pair Polytopes 

Quatemions Knots 

Vectors Lattices 

Matrices Sets 

Graphs Polynomials 

Polyhedra Sequences 

Partial orders 

Observe that while the above characterization of graphs, of  forms, and of  figums 
is explicit, when it comes to "structure" the description uses auxiliary concepts: "mathe- 
maücal object" and "model". This may appear as a less precise characterization, but 
mathematical objects am weh defined (table 2 illustrates some of  them) since they am 
constrained to (suitable) mathemaücal operations, which are always rigorously defined. 
The concept of  a "moder' is also generally weh understood, and accepted as an 
altemaüve form of  an object in which specific details of  interest am emphasized so that 
their study may offer some insight into the natum of the object itself. 

Hence, in summary, we can say that stmcture is an object built from components. 
The components can be selected such as to give particular emphasis (the second 
meaning in Webster's definition) and to offer parücular insight, and they themselves 
represent mathematical objects. Combining components in a structure can be associated 
with the term "pattem" ("the way in wh ich . . . " ,  the third meaning of  the Webster 
definition). If we adopt this pragmaüc approach to a structure, and then to chemical 
structure in parücular, observe that we still have a great lattitude in selecting 
com49onents which represent a structure; and even after components have been selected, 
we have considerable lattitude in selecting mathematical descriptors for such com- 
ponents. The chemical structure can therefore be viewed as constructed from atoms and 
bonds (as most common models assume), it can be viewed as composed of  fused rings, 
it can be viewed as composed of a collection of substructures (which can be, for 
example, Kekul6 valence structures in the case of conjugated benzenoids), the building 
blocks can be fundamental bases (as in proteins), etc. On the other hand, mathematical 
objects of  interest may be matrices, polynomials, sequences, sets, partial orders, lattices, 
etc. In table 3 we list numerous components which may be viewed as building blocks 
of  a chemical structure while, similarly, in table 4 we give a short list of  mathemaücal 
objects of  potential interest to represent structure and their components. Observe that 
components that contribute to the characterizaüon of a structure am not necessarily 
molecular fragments (such as atoms, bonds, group of atoms, rings, etc.), but include 
more abstract elements such as hybrid orbitals, molecular orbitals, Kekulé valence 
structures, conjugated circuits [3], etc. 
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Table 3 

Components of a moleculax slructure 

Atoms Kekulé valence structures 

Bonds Conjugated circuits 

Paths (of different length) Bond orbitals 

Fragments Non-adjacent numbers 

Rings Bond types 

Atomic" orbitals 

Table 4 

Objects, subject to mathemaücal manipulation, of interest for the 
characterization of molecular structure 

Sets Sequences 

Kekulé structures 

Atomic ID numbers 

Ring indices 

Ulam's subgraphs 

Bond orders 

Atornic charges 

Path numbers 

Characteristic polynomial 

Acyclic (matching) polynomial 

Self-retuming walks 

Random walks 

Conjugated circuits 

Weighted paths 

Important possibilities that the preceding pragmatic appmach lead to are: 

(a) Lists of  components together with instructions of how these are combined to give 
the structure. We refer to such as a molecular code, based on the particular 
components. 

(b) Sets of  components, i.e. collections of components for each structure. We refer 
to these as a projection of a structure. Observe that we lose information with 
a "composifion rule", and it may not be clear how to reconstmct the structure 
from its projectiorL It is an open problem whether a stmcture can be recovered 
from a sufficiently large number of  such pmjecüons. 

(c) Naturally ordered sets of  components, to be referred to as de scriptions. Indivi- 
dual elements of  natural sequences are referred to as molecular descriptors. 

(d) Finally, structure can be represented by a single number which captures much of  
the structural features. We will refer to these as topological indices. If such an 
index maintains a high discriminatory power, it may be referred to as a molecular 
ID number [4]. 
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The list of components that provide a basis for the characterizaüon of structures, 
exemplified in table 3, is by no means complete, and equaUy there is no restriction on 
construction of yet unconsidered invariants. The ultimate criterion in judging pragmatic 
descripüons is the utility. 

We have separated the mathematical objects of table 4 into two groups, one 
corresponding to "molecular projections" and the other to "molecular descripüons". 
Explanations of what is meant by "natural" order and what is meant by "capturing" 
structural features are needed in order to clarify the above classification. 

"Naturar' ordering implies some correspondence with the "size" of the 
components. For example, path numbers of different lengths allow one to order the 
count of such paths naturaUy. Similarly, conjugated circuits occur with different sizes 
and can be simply ordered. However, there is no such apparent natural way of ordering 
Kekul6 structures or Ulam's subgraphs (i.e. subgraphs obtained by erasing one of the 
vertices, each time a different one). Orderings based on numerical (computational 
or empirical) procedures are generally excluded because of their dependence on a 
pardcular parametrization adopted, and such ordering may change with repara- 
metrizations. Observe that a sequence implies a complete order, not a partial order 
which typically emerges in a comparison of structures. Partial order is typified with 
"fies", i.e. two or more structures being noncomparable, and thus allowing different 
complete orders. The difficulry with an "excessive" basis, such as that of aU subgraphs, 
or even of all Ulam's subgraphs, is that the number of components grows quickly and 
their use becomes impractical when considering the characterization of larger struc- 
tures. 

By "capturing" essential structural features, we mean that such severe projections 
(of a structure to a single number) should satisfy the basic requirement that apparently 
similar structures should be associated with numerically similar (i.e. not widely 
different) numbers. This is the case with a number of topological indices, such as 
Hosoya's Z (based on the count of nonadjacent bonds [5]), the connectivity index X 
(based on discrimination of (m, n) bond types [6]), the molecular ID number [4], and 
many other indices. 

3. Diamagnetic susceptibilities 

Hameka considered a quantum chemical model for computing the diamagnetic 
susceptibilities in alkanes [7] and other organic compounds [8]. Using an MO approach 
in the case of alkanes, he introduced the following plausible assumptions: 

(1) CC and CH bonds are localized. 

(2) All CC and CH bonds are the same, for all alkanes. 

A summary of Hameka's analysis is given in table 5, which gives the diamagnetic 
suscepübilities as additive in terms of the following three parameters: 
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Table 5 

Decomposition of the contributions to magnetic susceptibilides in alkanes 
according to quantum chemical MO modeling (capital labels) and graph 
theoreucal m o d e ~ g  (small labels) 

Molecule Hameka Graph theory 

methane A + C a 

ethane A - B 2a + b 

propane A + 2B 3a + 2b + c 

butane A + 3B 4a + 3b + 2c + d 

isopropane A + 3B + C 4a + 3b + 3c + e 

pentane A + 4B 5a + 4b + 3c + 2d 

2-methylbutane A + 4B + C 5a + 4b + 4c + 2d + e 

neopentane A + 4B + 3C 5a + 4b + 6c + 4e 

hexane A + 5B 6a + 5b + 4c + 3d 

2-methlypentane A + 5B + C 6a + 5b + 5c + 3d + e 

3-methlypentane A + 5B + C 6a + 5b + 5c + 4d + e 

2, 2-dimethylbutane A + 5B + 3C 6a + 5b + 7c + 3d + 4e 

2,3-dimethlybutane A + 5B + 26" 6a + 5b + 6c + 4d + 2e 

o o 

a b c d e 

A = a - c  a = A + C  
B = a + b + c  b = - A  + B - 2 C  

C = c  c = C  

A = X(C) + 4X(CH) + X(CC, CC) - 2X(CC, CH) - 5X(CH,CH); 

B = X(C) + X(CC) + 2X(CH) - X(CC, CC) - 4X(CC, CH) - X(CH,CH); 

C =-X(CC,  CC) + 2X(CC, C H ) -  X(CH, CH). 

If bonds are localized, identical, and constant within a set of compounds, then one could 
say the connectivity is of essence, not the fine details of the individual bonds (which the 
model ignores). This then means that the problem is a "disguiseci" graph theoretical 
problem and can be cast in an equivalent graph theoretical formulation. By considering 
the hydrogen suppressed graphs of methane, ethane, and propane (i.e. vertices (a), edges 
(b), and paths of length two (c), corresponding to the propane carbon skeleton) and by 
decomposing other alkanes in terms of a, b, c, we immediately obtain equivalent results 
(shown in table 5) with simple equivalence relations [9]: 
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A = a - c ;  B = a + b + c ;  and C=c. 

Graph theoreücal analysis has not "discovered" something new: it was Hameka and bis 
quantum chemical modeling which led to the recognition of the atom and bond addi- 
tiviües for the diamagnefic susceptibilities. The graph theoretical approach is, however, 
more "transparent" and, perhaps, more clearly points to the components which are 
essential in this particular molecular additivity. 

4. Ordering of isomers 

Consider fig. 1, listing the eighteen isomers of octane and their boiling points. Is 
there some regularity between the stmctural forms and the relative magnitudes for the 
boiling points? 

106.5 114.5 118.5 

15.7 1|8.6 117.7 

H2.0 

109.~ 115.6 117.7 

119,0 117.7 125.7 

Fig. 1. The octane isomers and their boiling 
points. Is there any regularity in this figure? 

Perhaps one sees some trends, but admittedly it is not apparent that there is a 
regularity; even less what it is one should look for! This problem was considered from 
the graph theoretical point of view, which can be reformulated as: In what structural 
components do the eighteen isomers differ? Only if we identify such discriminatory 
descriptors can we compare individual structures and hope to see if a particular 
descriptor can account for the observed isomeric variaüons. Isomers have the same 
number of carbon atoms (and the same number of hydmgens) and the same number of 
CC bonds; hence, we have to go beyond atoms and bonds in a search for useful 
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descriptors. There are no obvious directions in which to go, i.e. in which way to 
augment the model. For example, the next important discriminator could be the number 
of  close atomic "contacts", which will depend on the stereochemistry of  the compounds, 
the next structural element could equally be the number of  possible rotamers, which is 
different for different isomers, or possibly the role of the next-nearest-neighbor interac- 
tions, etc. If, however, we decompose the octanes in a fashion similar to that when 
examining their diamagneüc susceptibiliOes, and include larger path components, we 
arfive immediately at the rather simple mathematical descriptors listed in table 6 [10]. 

Table 6 

Isomers of octane and their path numbers 

Molecule Number of paths of length i 

Pl P2 P3 P4 P» P6 P7 

A 2,2,3,3 - tetramethylbutane 7 12 9 
B 2,2,4-trimethylpcmtane 7 10 5 6 
C 2,2,3-trimethylpent ane 7 10 8 3 
D 2,3,3-trimethylpentane 7 10 9 2 
E 2,3,4-trimethylpentane 7 9 8 4 
F 2,2-dimethylhexane 7 9 5 4 3 
G 3,3-dimethylhexane 7 9 7 4 1 
H 2,5-dimethylhexane 7 8 5 4 4 
I 2,4-dimethylhexane 7 8 6 5 2 
J 2,3-dimethylhexane 7 8 7 4 5 
K 3 -methyl-3-ethylpentane 7 9 9 3 
L 2-methyl-3 -ethylpentane 7 8 8 5 
M 3,4-dimethylhexane 7 8 8 4 1 
N 2-methylheptane 7 7 5 4 3 
O 3-methylheptane 7 7 6 4 3 
P 4-methylheptane 7 7 6 5 2 
Q 3-ethylhexane 7 7 7 5 2 
R n-octane 7 6 5 4 3 2 1 

We see that, even though there are no guarantees that the particular descriptors will 
pmduce a unique characterization, there is an apparent high discrimination between the 
isomers when path numbers are used as descriptors. If we restrict our attention to the 
leading path numbers in which octane isomers differ, P2 and P3' we still maintain a high 
discrimination between the individual octanes. By viewing (P2' P3) as coordinates, we 
can arrange all octanes as shown in fig. 2 [12]. We can replace coordinate sites with 
"blocks" and obtain a table reminiscent of the Periodic Table of Elements, with the 
individual sites in the table corresponding to isomers. By inserting experimental 
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Fig. 2. Octane isomers arranged on a pŒ, P3 coordinate grid. 
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Fig. 3. The isomers of fig. 2 depicwxl as a 
Table of Isomcrs (,o2 as columns and P3 as 
rows) with the boiling points inserted to 
illustrate a regular variation in the BP with 

P2 and P3" 
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pmperües, one can discem regulariües, as is illustrated by the boiling points in fig. 3. 
One immediately sees a simple regularity among the boiling points of octäne isomers: 
the relative magnitudes decmase with an increase in P2' and somewhat increase with an 
increase in P3" Not only have we in this way found, using the mathemücal properties of 
graphs, the regularity sought, hut as further studies show [12-15], such a Table of 
Isomers, as we can rightly refer to fig. 3, will show regularities in other physicochemical 
properües of alkänes. This includes pmperties that do not correlate among themselves, 
such as indices of refracüon and liquid densities of alkanes, which do not correlate with 
the boiling points, heats of formation, molar volumes, etc. Moreover, the same Table 
of Isomers can be used to suggest the construction of novel "molecular" properties 
derived by combining selected atomic properties, as has been iUustrated for 13-C 
chemical shif~ in alkanes [13,15]. 

5. Search for the critical substructure 

In fig. 4, we depict thirteen nitrosamines together with their relative mutagenic 
activities (as reported in the literature [16]). The structures are labeled alphabetically 
relaüve to their decreasing mutagenicity potential. The question here we would like to 

A ~ , s o  I1 ~--~-~- 
~.--~.---~ 75' G 

_L_ 
\ 

A-~,  ° 

l 

Fig. 4. Nitrosamines with their relative mutagenicity 
potentials. Is there some regularity here? 
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ask is: "Why do these, apparently similar compounds, show such large differences in 
their mutagenicity?" Or, in other words: "What is the underlying regularity in fig. 4? ' .  
Which structural factor is responsible for the observed relative differences in the 
mutagenicities of nitrosamines which cover the range of more than three orders of 
magnitude? 

This problem is different to that of the ordering of octanes in fig. 1 in that the 
molecules here am of different sizes and differ in the presence or absence of some 
substituents. Accumulated experience in medicinal chemistry and pharmaceutical 
studies suggests that some active substructure may be responsible for the bioactivity, 
and our task is then to identify such a substructure. A useful tool to examine molecular 
fragments is that of atomic ID numbers, which are sums of the weighted paths 
emanaüng from an individual atom [4]. Atomic ID numbers offer a basis for the 
construction of various "fragment projections". They represent a collection of invariants 
from which one can choose those belonging to specified fragments. In this way, 
different fragments can be studied and, hopefuUy, the pertinent one identified. 

We start with weighted paths, and in table 7 illustrate the computer output of the 
ALLPATH program on methyl-2-oxypropylnitrosamine (structure A), the most potent 
mutagen among those of fig. 4. Because in all compounds considered the heteroatoms 

Table 7 

Weighted path numbers for a nilIosamine of fig. 4 (compound A) 

8 

Atom Po Pt P2 '°3 Pa Ps Atomic ID 

1 1 0.8164 0.2721 0.2682 0.0392 0.0474 2.4436 
2 1 1.1498 0.3285 0.0481 0.0580 2.5845 
3 1 1.3189 0.4165 0.1742 2.9096 
4 1 0.5773 0.4281 0.2404 0.1005 2.3465 
5 1 0.7618 0.7985 0.1111 2.6714 
6 1 1.5606 0.1443 0.1314 0.03928 2.8757 
7 1 0.5000 0.5303 0.0721 0.0657 0.0196 2.1878 
8 1 0.7071 0.6035 0.1020 0.0929 0.0277 2.5334 

Molecule: 8 3.6960 1.7610 0.5739 0.1979 0.0474 14.2764 

Atom Molecular Higher connectivities Molecular 
count cormectivity ID 

are in "fixed" positions, we represented molecules by graphs without differentiating 
heteroatoms. The weighting procedure is based on assigning to a bond type (m, n), 



168 M. Randi(, The nature of chemical structure 

where m and n indicate numbers  of  nearest-neighbors (i.e. the valencies  o f  the two 
vertices in the edge),  the weight  1/sqrt (m, n), just  as used in the design of  the connec-  
tivity index [6]. Atomic  ID numbers  are shown in the last column,  and these are the 
numbers  used to represent  the individual compounds  considered. Because  in this case 
it is not difficult  to recognize the "corresponding" atoms in different compounds ,  

ordered sets on n-tuples could be viewed as vectors in n-dimensional  Eucl idean space. 
Thus,  i f  we select a 7-atom fragment  (associated with labels 1 - 7  in table 8), we obtain 
for the first compound:  

A: (2.44, 2.58, 2.90, 2.34, 2.67, 2.87, 2.18). 

The  above are truncated entries of  the last column in table 7. Similarly,  one finds that 
the second compound  is characterized by the project ion [18]: 

B: (2.45, 2.59, 2.95, 2.36, 2.77, 2.92, 2.36). 

Table 8 

Atomic ID numbers for the seven atoms forming the fragment to be investigated a 
(numbering of atoms as in table 7) 

Atom 1 2 3 4 5 6 7 
Molecule 

A MOP 2.443 2.584 2.909 2.346 2.671 2.875 2.187 
B MHP 2.454 2.598 2.950 2.369 2.770 2.926 2.356 

DMN 2.402 2.534 2.760 2.260 2.260 - - 
C BOP 2.484 2.634 3.054 2.732 2.732 2.897 2.198 
D 2-MOB 2.447 2.584 2.924 2.355 2.708 2.979 2.547 
E MP 2.451 2.594 2.939 2.363 2.744 2.652 2.375 
F HPOP 2.495 2.647 3.099 2.749 2.831 2.903 -2.201 

2.951 -2.370 
G POP 2.492 2.644 3.089 2.744 2.805 2.683 2.397 

2.200 
H 3-MOB 2.455 2.594 2.594 2.372 2.781 2.725 2.894 
I 2-HPP 2.503 2.657 3.129 2.844 2.822 2.691 2.403 

2.373 
J DP 2.500 2.654 3.118 2.817 2.817 2.684 2.401 
K BHP 2.506 2.661 3.140 2.848 2.848 2.958 2.374 
L 3-HPP 2.508 2.664 3.148 2.830 2.891 2.835 2.698 

2.405 
aOnly data for the seven common nonhydrogen atoms are represented. In some cases, there 
are two alternaUve choices for the seven atoms and both ahernatives are shown. 

Similar  results fol low for other ni trosamines of  fig. 4, which are listed in table 8. It  is 

not  difficult  now to evaluate the "distance" be tween any pair  o f  structures. It suffices, 

however ,  to consider  the structures A and B as the standards and evaluate  the distances 
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between the other structures and the standards. The standards A and B are the com- 
pounds with the greatest bioactivity. The derived distances give a measure of  similarity 
between the compounds, based on the selected 7-atom molecular fragment. With respect 
to A, we obtain [17]: 

B D C F G K E J I L H 
0.20 0.37 0.42 0.48 0.50 0.54 0.54 0.61 0.63 0.63 0.80, 

and with respect to B, we obtain a different ordering: 

A D E C F G L J K I H 
0.20 0.21 0.27 0.41 0.41 0.47 0.53 0.54 0.55 0.56 0.57. 

From the above two orderings, one can extract a partial order, i.e. a set of  all frag- 
mentary orders that am present in both the above sequences. For example: the sequence 
D, G, J, I, H is one such subsequence because, as one can see upon inspection, in both 
sequences this partial order is contained. A simple way to extract all such embedded 
partial orders is illustrated at the top of fig. 5, where the two sequences, based on the 
leading structures A and B as standards, were written one above the other. Subse- 
quently, the same labels in the two sequences are connected. Each crossing of a line 
indicates a pair of  structures which have an inverted order and hence cannot be 
"compared", i.e. do not dominate each other. Hence, a label (structure) which does not 
cross lines of other labels (compounds) dominates all such compounds if it is closer to 
the standard. In this way, we derive the pictorial representation of  the pärticular partial 
order, shown in the middle of fig. 5. 

The test of the assumption that the particular 7-atom fragment is responsible for 
the relative mutagenicity consists of replacing structures in the derived partial order 
with the numerical values for the mutagenicity and examining if such a replacement 
involves serious contradictions. A contradiction is reflected by a reversed order of tl'? 
relative magnitudes of mutagenicity, while acceptable results should be accompanied 
with a regular decrease of the numerical values for the property (mutagenicity) as we 
move from the standards at the left to less and less similar compounds at the right-hzAd 
side of  the diagram. From fig. 5, we can conclude that there are no serious contradictions 
in our result, even though the parücular partial order has a few minor discrepancies. 
Since we labeled the compounds alphabetically, unacceptable results would appear as 
a partial order, which seriously violates an alphabetical arrangement associated with the 
hierarchical graph of  the partial order. For example, when we consider the fragment to 
consist of  six atoms only (e!iminating atom 7), we obtain the following diagram for the 
partial order: 
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A B D C F 6 K E J I L 

B D A E C F C L J K I H 

Fig. 5. Partial order derived for nitrosamines of fig. 4 (ordered 
in decreasing similarity to the standards A and B), when a 7- 
atom fragment is taken as a basis for comparison and similarity 
is based on (weighted) atomic ID numbers. 
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Fig. 6. Relative mutagenicities of the nitrosamines of fig. 4 plotted against 
decreasing similarity to compound A, based on a 7-atom fragment. 
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which shows several apparent alphabetical "conflicts". To see that the result of fig. 5 is 
indeed acceptable (despite its own minor discrepancies) or, in other words, to recognize 
the discrepancies in the diagram (fig. 5) as minor, we depict in fig. 6 the correlation 
between the reported mutagenicities and the similarity of the nitrosamines with respect 
to A (based on the numerical values in the sequence previously shown). TheoreticaUy, 
one expects the regression to be given by some descending funcUon, lndeed, as we see 
from fig. 5, there is a high correlation between the bioactivity and the degree of 
similarity (based on 7-atom fragment and atomic ID as mathematical characterization). 

6. Design of a structure with desired property 

The capability of graph theoretical approaches to discem the essential parts of 
molecules to be associated with a particular property is of great interest. The example 
illustrated a direct quantitative scheme for such explorations. Previous approaches to 
the detection of important fragments, such as implied in the "morphine riffe" [18], were 
based on chemical intuition and experience, or altematively on statistical inference [ 19]. 
In this section, we will briefly illustrate how to use the outlined methodology in a search 
for a compound of desired property and how to verify that a particular compound 
belonging to a certain class is the best. This will be achieved without screening all 
compounds of a given class, which would be difficult even for families with a relatively 
smaU number of compounds. 

Consider the nine benzomorphans of fig. 7, which have been alphabeticaUy 
labeled in parallel to their relative analgesic activities. Again, we should search for a 
molecular fragment which is the basis for comparisons of the molecular properties and 

A B C 

D E F 

G H [ 
Fig. 7. Benzomo~hans arr~gecl ~ph~fic~ly wi~ 
decreasing analgesic potency. 
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which, if found, would produce the iUustrated, alphabeücal ordering of the compounds. 
We test the same fragment in different molecules against the sarne fragment in the 
standard, benzomorphan A, the most potent analgesic. Preliminary examinations of the 
benzomorphans [20] included the largest common substmcture with n = 15 atoms as the 
fragment in the nine benzomorphans considered, the "morphine rule" fragment of 
n = 11 atoms, and a smaller fragment with n = 8 atoms, illustrated in fig. 8. All the 
fragments considered could account qualitatively for the observed ordering of the 
benzomorphans quite weil. 

N=15 

jF - ~ 

f 
t I 

Fig. 8. Various fragments of interest in a search 
for the "best" benzomorphan compound. 

We will now consider the reverse problem: We will pretend that we do not know 
that A is the best compound among the nine benzomorphans and will see il, by some 
systematic, objective procedure, we can point to A as the best compound. We selected 
the smallest fragment of fig. 8 (n = 8) to illustrate the search for an optimal structure. 
Suppose that at random we synthesized compound E, in the middle of the group, which 
upon testing shows a fair bioactivity. Then, in a similar fashion, we obtain another 
compound in the class, say D, which shows a better pefformance. Wem the second 
compound found, compound F rather than D, which signals a weaker bioactivity, we 
could discard it from further consideraüon because it points in a "wrong" direction from 
our search. However, eren such negative results could be used, as a characterization of 
the opposite (undesirable) direction. However, in order to simplify the outline of the 
search procedure, let us consider how to use the novel compound D, which shows a 
better characteristic, with the information on the previously obtalned compound E. 
The two structures E and D can be "averaged", producing a hypothetical structure 
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(D + E)/2 for which we can write the molecular "projection", the set of atomic ID 
numbers that such a hypothetical structure would possess. The search continues, and 
upon hitting the compounds C and B we should iff the same way construct hypothetical 
average structures (C + D + E)/3 and (B + C + D + E)/4, respectively. The effect of the 
averaging is an enhancement of the structural characteristic that is critical for the 
particular property and attenuation of those structural features in which the compounds 
differ, and which presumably therefore cannot be responsible for the particular property. 
In table 9, we show the atomic ID numbers for the common eight atoms of the 
hypotheücal structures, together with the extrapolated atomic ID values obtained 

Table 9 

Atomic ID numbers for hypotheücal structures obtained by averaging structures with higher activity with 
the extrapolated "best" atomic ID descriptors approaching the "missing" structure A 

Atom E (D + E)/2 (C + D + E)/3 03 + C + D + E)/4 Extrapolation A 

1 0.365 0.367 0.363 0.361 0.359 ~ 0.360 
2 0.383 0.384 0.380 0.379 0.375 0.376 
3 0.378 0.374 0.369 0.370 0.363 0.364 
4 0.405 0.406 0.406 0.406 0.407 0.407 
5 0.286 0.287 0.298 0.295 0.305 0.308 
6 0.338 0.339 0.337 0.336 0.336 0.336 
7 0.342 0.343 0.340 0.338 0.336 0.337 
8 0.396 0.398 0.395 0.393 0.392 0.393 

Euclidean 
distance 0.029 0.028 0.013 0.015 0.004 - 
from A 

by a least-squares linear fit of the four points, corresponding to E, (D + E)/2, 
(C + D + E)/3, and (B + C + D + E)/4, taken as guiding us toward the structure of 
desired optimal activity. The last column in table 9 reproduces the atomic ID for the 
eight atoms of the leading structure A, the "best" compound in the class. We immedi- 
ately see that an extrapolation leads to a hypothetical structure A' with the smaUest 
difference with structure A (measured by viewing structures as vectors in an 8-dimen- 
sional Euclidean vector space). If we systematicaUy examine all derivaüves of benzo- 
morphan of interest by exploring all avaüable substitution sites and compare the 
corresponding vectors based on the atomic ID values, we could in principle exhaust the 
pool of reasonable structures and with certainty deduce which is the best structure, i.e. 
which structure is at the smallest distance from A'. The idea of "search" vectors has been 
advanced by Venkataraghavan and collaborators [21] in combination with their own 
topological descriptors. Their search vectors were defined, not as we outlined here by 
an "iteraüve" (and interactive) procedure, but as vectors defined between the centroids 
of acüve and the centroids of inactive compounds. There is no doubt that the search 
vectors, which indicate figuratively in which direcüon to "navigate" through the "sea" 



174 M. Randi~, The nature of chemical structure 

of structures makes this search more efficient. The concept is analogous to the use of 
a steepest gradient in "greedy" algorithms and other numerical computational problems. 
One can further refine such approaches by restricting the number of compounds 
included in the "averaging". Thus, when a new compound which qualifies for inclusion 
is found (i.e. a compound exceeding in property the compounds already considered), 
the least active compound in the averaging set is left out. This is likely to increase 
the signal-to-noise rafio in the search, i.e. decrease the role of irrelevant parts of the 
structures considered. 

7. Anatomy of QSAR 

Quantitative structure-activity relationships (QSAR) may be categorized as 
structure-cryptic empirical schemes (e.g. Hansch-type analysis [22]), structure- 
implicit methods (e.g. quantum chemical computations), and structure-explicit (graph 
theoretical) approaches [23]. Briefly, structure-cryptic methods use (often large 
numbers of) molecular properties as descriptors and, in fact, if successful, represent a 
property-property relationship rather than a structure-property relationship. Structure- 
implicit approaches treat the molecule as a whole, not as composed of components 
which, when considered, are identified in an intuitive or empirical way, and are not an 
integral part of the computational method. Finally, structure-explicit methods are those 
of graph theory [24] in which well-defined structural (mostly graph) invariants form a 
basis for comparisons among molecules. Although most investigators employ orte of the 
diverse methodologies, the structure-activity phenomena are so complex that all the 
currently available methodologies may not suffice. Hence, orte should try to combine 
"different" points of view and different methodologies when possible. It would facilitate 
further development if at the same time researchers using different schemes point out 
applications and individual structures which fail to agree with a particular regression or 
do not fit a particular description. The so-called "outliers" of a correlation, which one 
tends to exclude, ought to be closely examined and the structural basis for their apparent 
ill-behavior understood. Thence, they may lead to valuable information which may 
eventually point to an important improvement of the underlying model. 

Most traditional QSAR reports use large numbers of experimental quantities, 
such as logP (partiüon coefficient for octano[/water as an indicator of transport 
charactefistics), hydrophobic constants ~ri, ApK(a)  values, molar volumes, molar 
refractivities, etc. These are then also occasionally combined with some quantum 
chemically computed parameters, such as HOMO and LUMO parameters that are 
suggestive of electron "mobility", etc. As a rule, such traditional QSAR studies avoid 
the use of graph theoretical descriptors, such as various connectivity indices. Because 
of this situation, it is in order to illustrate an example of the differences and similarities 
between the "traditional" approaches to QSAR and the "novel" approaches to QSAR 
based on graph theoretical descriptors. 

In fig. 9, we show eighteen molecular skeletons of the variable fragments of 2- 
(arylinino)imidazolidines: 
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Fig. 9. Variable fragment in irnidazolidines examined 
with experimentally reported activities (as log 1/ED). 
Chlorine atoms are represented by circles. 

in which X is either methyl or chlorine. These compounds have known hypotensive 
activities and the data used are as reported by Timmermans and van Zwieten [25], 
whose results we re-investigated. These authors examined almost a dozen different 
pmperty-based molecular descriptors, including logP, ApK(a), the lowest electronic 
excitation energies as derived from the difference in HOMO and LUMO, the hydro- 
phobic constant zi, parachor (a parameter govemed by volume and surface tension of 
a molecule), steric parameters (as proposed by TaB), and molar refractivifies. They 
considered a total of twenty-seven compounds, of which eighteen involve chlorine as 
the only heteroatom. The additional nine compounds included, besides chlorine, 
also fluorine, bromine, oxygen and nitrogen. We excluded these nine, being too few 
compounds to allow one to estimate the empirical parameters associated with these 
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heteroatoms. Because we reduced the initial sample size, we had to re-evaluate the 
original correlation equations of Timmermans and van Zwieten. We arrive at the 
foUowing replacements [26]. The best reported correlaüon based on a 5-descriptor 
(parachor and parachor-squared, ApK(a), HOMO and another MO-derived parameter) 
now gives r = 0.964 for the correlation coefficient and s = 0.301 for the standard 
deviation. These r and s values, as expected, have been improved slightly when com- 
pared to those for the set of n = 27 structures. The best single parameter correlaüon 
(based on logP) now has r = 0.529 and s = 0.864, while stepwise inclusion of the 
descriptors in the best 5-parameter correlation gradually increases the correlation co- 
efficient from r = 0.675 for single variable (ApK(a)) to r = 0.731 for two-parameter 
regression (quadraüc in parachor) and then further to r = 0.902 when the three para- 
meters mentioned above am combined. 

Let us now consider a graph theoretical approach to the same set of compounds. 
The first task is that of deciding how to discriminate between carbon atoms and 
chlorine. The compounds of fig. 9 have a heteroatom "floating" around, and it is no 
longer possible to ignore the differences between carbon atoms and heteroatoms. For 
example, we may compare the reported log 1/ED for the foUowing: 

2-C1, 4-Me 2,4-C1(2) 2-Me, 4-C1 2,4-Me(2) 
53 61 275 810 (#g/kg), 

all of which, if one does not discriminate the heteroatom, correspond to the same 
molecular graph. Observe also that from the log(liED) values shown for the four 
compounds, no simple "additivity" is apparent. Moreover, even the trend associated 
with heteroatoms is not apparent, because the di-chloro substituent is "flanked" by 
mono-chloro substituents. Kier and Halrs valency connectivity indices [27], because of 
their inherent bond additivity, are not suitable for describing the above "irregular" 
behavior. We therefore decided to consider the diagonal elements of the adjacency 
matrices as a route to discrimination among heteroatoms. Such "modifications" of the 
diagonal entries in the adjacency matrix correspond to what one normally does in 
empirical MO methods. Eren in the eafly applications of graph theory to chemistry, as 
discussed at length already in 1940 by Balandin [28], atomic labels wem considered as 
the entries on the diagonals for various matrices associated with molecular properties. 
The same idea can also be found later in the work of Spialter on chemical documenta- 
tion [29]. 

Our preliminary studies [26] suggest a negative value o f -0 .20  as "sufficient" 
(hut in no way an optimal value) to discriminate between chlorine and carbons (the 
lauer, of course, have diagonal elements zero). Therefore, using for chlorine -0.20 as 
the diagonal matrix entry and confining the summation in deriving the connecüvity 
indices to the eight common atoms: 

@-, 
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present in all of  the eighteen fragments, we obtain for the weighted path counts, which 
correspond to the leading connectivity indices, the values shown in table 10. These 
connectivity indices, or to be more precise, 8-atom fragment weighted paths of  length 
1, 2 and 3, are subsequently used in multiple regression analysis. 

Table 10 

The connectivity index X and higher path numbers obtained using empirical 
parameters (as the diagonal element for chlorine) to discriminate heteroatoms 

Compound 1 - X 2 - X 3 - X 

1 2,6-c½ 4.278 2.015 0.978 
2 2,4,6-c13 4.418 2.120 0.969 
3 2,3-c½ 4.278 2.015 0.963 
4 2,6-C½-4-Me 4.384 2.092 0.957 
5 2-C1-6-Me 4.244 1.989 0.964 
6 2,6-M% 4.210 1.964 0.949 
7 2,4-C½ 4.262 2.036 0.982 
8 2-C1-4-Me 4.228 2.008 0.970 
9 2,4-C½-6-Me 4.384 2.095 0.955 

10 2,4-Me2-6-C1 4.350 2.067 0.944 
11 2,5-C½ 4.262 2.036 0.982 
12 2-C1 4.122 1.939 0.982 
13 2,6-Me2-4-C1 4.350 2.069 0.942 
14 2-Me-4-CI 4.228 2.011 0.968 
15 2,4,6-Me 3 4.316 2.042 0.931 
16 2,4 -Me z 4.194 1.983 0.956 
17 2-Me 4.088 1.914 0.966 
18 unsubstituted 3.966 1.869 0.979 

Use of  a single graph theoretical parameter, the 1 - X connectivity index derived 
from the modified adjacency matrix, using the standard A L L P A T H  program supple- 
mented with weighting factors that have already been mentioned, gives the regression: 

10g (1/ED) = 5.781X - 24.1643, 

with r = 0.690 and standard deviation s = 0.712. Tlaäs is visibly better than the single 
parameter correlation using molecular properties ( logP)  or the best single parameter 
(ApK(a)). Continuing, by adding 2 - X to 1 - X, we obtain the foUowing two-parameter  
regression: 

log (1/ED) = 20.830X - 26.636(2 - X) - 34.516, 
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with r = 0.781 and s = 0.635. The improvement is considerable, though not dramatic. 
In part, this is because the two graph theoretical parameters 1 - X and 2 - X themselves 
have a correlation (r  = 0.608), implying some "duplication". Nevertheless, the above 
two-term correlation is very comparable to the best two-parameter property-based 
correlation, the quadraüc correlation in logP with r = 0.786 and s = 0.629. If, however, 
we continue and include 3 -  X, we obtain the correlation equation: 

log (1/ED) = 36.265X - 49.192(2 - X )  + 46.829(3 - X) - 99.830, 

with an impressive improvement in the correlation coefficient ( r  = 0.977) and impres- 
sive reduction in the standard deviation (s = 0.224). 

As one immediately sees, the above three-parameter graph theoretical correlation 
is better then the bestfive-parameter correlation based on physical properties, combined 
with quantum chemical quantiües as descriptors. We should also add that the five- 
parameter best correlation of  Timmermans and van Zwieten was derived after screening 
numerous altematives and using some dozen property or quantum-chemicaUy computed 
descriptors. In contrast, we have not used statistical analysis to select the best combina- 
tion of  the connectivity indices, we simply took the leading three indices. Moreover, we 
have not even attempted to optimize the "diagonal" entry for chlorine, taken as -0.20, 
since we wanted to illustrate the flexibilities of graph theoretical schemes rather than 
focusing on a search for the best correlation. If, for example, one decreases the 
"diagonal" parameter t o - 0 . 4 0  with a single connectivity index X, one increases the 
correlation coefficient from r = 0.690 to r = 0.750. The so improved correlation, if 
compared with the single-parameter traditional QSAR derived from data by Timmer- 
mans and van Zwieten, doubles the variance of the correlation based on logP; and 
again, -0 .40 is not the optimal value for the diagonal entry of  chlorine either! 

In summary, graph theoreücal descriptors are capable of  capturing, in a meaning- 
ful contraction, a great deal of  relevant structural information. As illustrated in the case 
considered of imidazolidines, the graph theoretical descriptors are superior to traditional 
physicochemical descriptors, even when these are augmented with various quantum- 
chemicaUy computed parameters. 

8. New directions 

It is hoped that we have succeeded in informing the reader of  some aspects of  the 
graph theoretical approach to structure-property and structure-activity problems. The 
graph theoretical approaches include, in addition to deriving correlations, the use of  
graph descriptors in other theoretical schemes, such as pattem recognition [30], the 
ranking of  compounds, the search for substructure, and even the "design" of  new 
compounds. All these methodologies have as a common part the use of  various graph 
theoretical descriptors. A successful graph theoretical approach can be recognized as 
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one which identifies the criücal structural factor that dominates a property. In the case 
of chromatographic retention indices and boiling points, the discriminaüon of bond 
type, which is incorporated in the connecüvity index, appears to be one such 
critical observation [31]. In the case of the aromaticity of conjugated hydrocarbons, it 
is the concept of conjugated circuits which plays the critical role [3]. In the case of 
isomeric variations in alkanes, P2, P3 coordinates suffice to reveal the regularity. All this 
indicates the combinatorial richness of molecular structure, but for an unsolved problem 
it need not be apparent which structural component is essential. The weighted path 
numbers, which can be reduced to molecular connectivity indices or altemaüvely to 
atomic ID numbers, appear to be general descriptors, particularly suited for comparison, 
similarity tesüng, searching for fragments, etc. Hence, it seems desirable to consider 
their extension to heteroatoms and to three-dimensional stmctures. Both of these important 
problems received recent attention and show promise. This is not the place to elaborate, 
but we will briefly comment on these most recent advances. 

The "natural" way to discriminate heteroatoms has already been outlined for 
chlorine atoms of (arylimino)imidazolidines. With each heteroatom, one associates a 
characterisfic (empirically determined) value for the corresponding diagonal matrix 
entry. There is in addition a "flexibility" associated with variations in oft-diagonal 
entries of the adjacency matrix [32], fully analogous to similar approaches in extending 
the HMO method to ~ri-systems with heteroatoms. It remains to be seen if there will be 
any connection between the empirically determined parameters based on selected 
structure-property correlations and those from quantum chemical calculaüons. If the 
answer is positive, one could be in a position to formulate "valency" rules, such as the 
well-known Slater rules for the construction of simple orbitals [33], or the rules of Kier 
and Hall for valency connectivity indices [34]. 

Three-dimensionality appears to be a more "difficult" problem, in part since there 
is no analogue in quantum chemical computations, which (unless a direct inter- 
acüon of more distant centers is explicifly taken into account) are also devoid of 
three-dimensionality. The difficulty of the task can already be visualized for cis and 
trans butadiene, which in simple HMO theory are not discriminated. In order to 
discriminate between cis and trans butadiene, we have to take into account differences 
in their geometry. This immediately suggests the use of geometric matrices instead of 
adjacency matrices as a basis to represent molecules [35]. If we take the CC bond length 
as a unit, we obtain the geometric, or topographic, matrices shown in table 11. Observe 
that the matrices for cis and trans isomers differ;, hence, if they are now viewed as 
"weighted" matrices, we can use the ALLPATH program [36] and derive the associated 
atomic path numbers, molecular path numbers, atomic ID and molecular ID numbers in 
the way that these quantities are derived from the adjacency matrix. Table 12 gives 
results for the two butadienes and compares them with the corresponding numbers 
derived from the adjacency matrix. As can be seen, the two sets of numbers are very 
comparable, the weighted path process being rather stable, i.e. no sudden variaüons are 
found among the descriptors for similar molecules or atoms in a similar environment. 
Thus, we are optimisüc that path numbers (suitably weighted), whether arising from 
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Table 11 

Adjacency matrix of butadiene graph compared with topographic (geometxic) 
matrices for c/s and trans butadienes (CC bond length assumed to be 1.00) 

Butadiene graph cis-butadiene trans-butadiene 

I~ °~~/  0 ~ 0 
l o  ~ I o 45 1 o 
0 1 

2 -f'3 1 -f7 45 1 

45 

Table 12 

The weigted path numbers p(k), atomic ID numbers a(k), and the 
molecular ID for butadiene, viewed as cis, irans, or ordinary graph 

Path numbers 

p(1) p(2) p(3) 

c/s-butadiene 1.991 1.290 0.431 
trans-butadiene 1.956 1.123 0.349 
butadiene graph 1.914 0.707 0.250 

Atomic ID (path sums) 

a(1) a(2) Molecular ID 

c/s-butadiene 2.916 2.796 7.7123 
trans-butadiene 2.660 2.794 7.4276 
butadiene graph 2.311 2.561 6.8713 

molecular graphs, from "colored" graphs, i.e. graphs with heteroatoms, or, finally, from 
structures embedded in three-dimensional space, may offer a suitable characterizaüon 
of chemical structure. 

9. On the role of graph theory in chemistry 

It appears appropriate to end this exposition on chemical structure from a graph 
theoretical perspective with some general comments on the role of  graph theory in 
chemistry, and theoreüc~ chemistry in  particular, One should b e  reminded that, 
apparently, there is a prevailing impression among chemists that difficult problems lie 
ahead with regard t o  the computational difficulües arising fmm ~ e  proliferation ~0f 
molecular integrals in quantum chemical computations when orte stri~es for:ever 
increased accuracy for ever larger molecular systems. Few, how~er ,  indicated that 
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there are conceptual difficulties to be resolved as one extends the size of molecules and 
approaches biologically important systems. Primas [37] has been very explicit in bis 
book in emphasizing the conceptual, not the computational, difficulties as the major 
obstacle to be resolved. Parr [38] also has raised questions conceming "extrapolaüon" 
of quantum chemistry to ever larger molecular systems, and so have several others. 
Consider some of the foUowing questions: 

(1) Why do some theoretical models give much better results than the underlying 
assumptions would justify? 

(2) Why do some theoreücal models apply outside the domain of their inifial 
inauguration? 

(3) Why do nonphysical quantities correlate with observables? 

Illustrations of (1) include the Hückel MO model (and the underlying approxima- 
tion of the nearest-neighbor interaction advanced by Bloch [39]), and the crystal field 
model, while an illustration of (2) includes the Hückel 4n + 2 aromaticity rule, which 
can be mathematically justified for monocyclic rings only, yet it holds for cataconden- 
sed (but not many pericondensed) benzenoid hydrocarbons. Equally, we could here 
mention the Woodward-Hoffmann orbital symmetry rules [40], which operate even 
when symmetry is not an essential element of a system. Both (1) and (2) may apparently 
be viewed as problems that quantum chemistry may consider (and no doubt some have 
commented on them), but more "troublesome" is the case (3), since it clearly goes 
beyond quantum chemistry, which as a branch of quantum theory is confined only to 
observables. The list of commonly used non-observables is impressive, not perhaps by 
its length but by its content, which includes: potential energy (and, of course, potential 
surfaces), electrostatic potential, hybridization and hydrids, molecular orbitals, bond 
orders (both Coulson's as weil as Pauling's), Kekulé valence structures (and, of course, 
conjugated circuits), resonance energy, bond dipoles, molecular surfaces, molecular 
volumes, etc. 

Graph theory has already clarified some of these difficulties. For example, the 
Pauling bond order can be directly interpreted within the chemical graph theory and thus 
becomes a simple graph theoretical invariant or, if you will, a mathemaücal "property". 
Hence, when such bond orders are used to discuss observable CC bond lengths in a 
molecule, such as naphthalene or phenanthrene, one is merely considering a 
property-property correlation, where one property is a mathematical property (Pauling 
bond order) and the other is a physicochemical property (CC bond lengths). In such an 
approach, the dilemma of how to correlate a structure, which is not a number, with a 
property (commonly expressed as numbers) is resolved by considering a mathematical 
property instead of chemical structure as the reference object. Consider now a correla- 
tion using graph theoretical descriptors and a physicochemical property. Since physico- 
chemical properties, at least in principle, follow from prescribed mathematical analyses 
(which is behind the axiomatics of quantum theory), we in fact see that one can view 
such correlations as mathematical property versus mathematical property correlations, 
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where one class of mathematical properties are structural invariants and the other is 
frequently "substituted" with experimental properties in view of computational difficul- 
fies (or more correctly, computational inaccuracies of computed wave functions). The 
actual chemical properües that are measured by some instruments only serve to verify 
that our "advanced" mathematical model (quantum theory) applies, and that the 
parücular appmximations are adequate. The "other" mathematical models (graph 
invariants, structuml invariants) only help us to visualize the results, since gmph 
theoreücal concepts are "transparent", while quantum chemical computations on larger 
systems are highly convoluted. 

Hence, quantum chemisu~ plays the mle of "perfect" model, while graph theory 
helps to "digest" very advanced computational models, so to speak. Graph theory can 
hopefully help one in building a visual image of highly elaborate models or to interpret 
partial results in terms of some underlying structural invariants. That is exactly what 
Coulson did when he intmduced his bond order, which can be interpreted as a graph 
theoretical construction. However, that is not where graph theory ends; that is where it 
begins and where it makes "bridges" to quantum chemistry. Graph theory is basically 
concemed with consequences of the particular connectivity present in a system, rather 
than being interested in the origin of the connectivity, i.e. in "The Nature of Chemical 
Bonding" [41], it is interested in the "follow up" and, hence, operates at a lower 
"resoluüon" by accepting given bonding and continues to search for various conse- 
quences that the particular bonding implies. Hence, we can rightly refer to such 
concems as the study of "The Nature of Chemical Structure". 

Can one reconcile quantum chemistry with graph theory? Well, first of all there 
is no contradiction here. The two theoretical disciplines have different domains. They 
operate at different levels and are complementary rather than competitive or duplicative 
ofone another. Some confusion about graph theory may have been caused by those who 
identify the Hückel MO as graph theory, when in fact the parallelism extends only to 
the mathematical equivalence between the two when considering HMO and graph 
spectral properfies. Graph theory is a branch of mathematics, HMO is a chemical model, 
not mathematics, and only because of the tacit assumption that the interacüon matrix 
(approximate Hamiltonian) in HMO theory is the adjacency matrix of the underlying 
graph do the two become computationally equivalent. 

On the other hand, if we generalize graphs with variable weights, as has been 
illustrated in this paper, we can view general matrices as objects of generalized graph 
theory. Here, we only mention the geometric or topographic matrix (in which bonds are 
measured in CC bond-length units), besides the adjacency matrix. However, we can take 
a step forward and consider an), matrix, including molecular Hamiltonian matrices, or 
matrices whose elements are selected molecular pmperties as objects of graph 
theorefical analysis. For example, to be specific we could take the Pariser-Parr-Pople 
matrix [42], associated with, say, anthracene, and consider it as a mathemaücal object 
for detailed analysis. Then, if one confines his or her interest to the spectral properties 
of such a matrix, one can claim, in the same spirit that people recognized HMO theory 
as gräph theory, that the PPP method and the whole of traditional quantum chemistry 
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is part of graph theory. However, the emphasis in graph theoretical studies is on 
structural invariants of such matrices, while the emphasis in quantum chemistry is on 
the particular structural invariants: eigenvalues and eigenvectors. It seems desirable, 
therefore, to maintain this distinction between quantum chemistry and graph theory, 
even though eigenvalues and eigenvectors are as much a part of graph theory as they 
a r e a  part of quantum chemistry. The generalizaüon of graphs to weighted graphs, 
which then allows one to take a step further and consider any matrix as a "weighted" 
graph, opens novel horizons for the chemical combinatorics and topology - which graph 
theory in essence is. However, let us again emphasize that our interst, from a graph 
theoretical position, remains with structural invariants as a tool for a better understand- 
ing of the nature of the chemical structure, i.e the description of a structure in terms of 
critical structural parameters. This supplements the interests of traditional quantum 
chemistry, concemed with eigenvalues and eigenvectors and their subsequent use as 
structural invariants in computing molecular properties. 
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